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SUMMARY: 
allows plant perturbations t o  go unchecked as  long as  they are within some 
bounding hypersurface i n  perturbed s t a t e  space. 
represents some l i m i t  on acceptable plant perturbations. When a perturbed 
s t a t e  a t t a ins  the hypersurface a l inear  feedback control i s  in i t i a t ed ,  
optimally driving the  s t a t e  back toward the origin f o r  a fixed amount of 
time with a fixed amount of control energy. A t  control shutdown there  
ex is t s  some residual perturbation and the  mode of operation continues. 

A regulator fo r  l inear  plants i s  proposed whose mode of operation 

This bounding m r s u r f a c e  

A conventional solution for the optimal control for  each operation 
leads t o  an equation for an undetermined multiplier which depends on the 
i n i t i a l  phase of the plant. With the  above mode of operation the i n i t i a l  
phase i s  not known a p r io r i  so that an on-line solution t o  the multiplier 
equation i s  necessary t o  specify the  control pr ior  t o  each operation. It 
i s  shown i n  this paper how t h i s  requirement msy be avoided by interpret ing 
the mult ipl ier  equation geometrically a s  a family of hypersurfaces i n  s t a t e  
space. 
required i n  the mode of operation, the optimal control l a w  may be specified 
before the regulator i s  put in to  service. 
applied t o  a l inear  osc i l la tor  are  given t o  i l l u s t r a t e  i t s  mode of 
operati on. 

By u t i l i z ing  one of these hypersurfaces as  the bounding hypersurface 

The results of the regulator 

PROBLESI STA- 

The system considered may be writ ten 
i n  vector-matrix notation 

2 = F ( t ) x  + G(t)u (. = &) (1) 

where X E ~  is the plant perturbation 
from equilibrium and u& i s  the con- 
t r o l .  The system is assumed t o  be corn- 
pletefy controllable 

The regulator 's  mode of operation 
allows plant  perturbations due t o  dis- 
turbances and possibly plant i n s t ab i l i t y  
w 5 t . l  ne con+,rcl action 2s long as they 
a re  within some bounding hypersurface i n  
perturbed s t a t e  space. This bounding 
hypersurface represents the l imiting 
value of acceptable plant perturbations. 
When a perturbation a t t a ins  t h i s  hyper- 
surface, say a t  t i m e  t o ,  the control 

i s  i n i t i a t e d  and operates f o r  a fixed 
amount of time, 
perturbed s t a t e  back toward the origin. 
A t  tl the  control i s  shut down and the 
regulator's cycle repeats. This paper 
deals with the control and the  bounding 
hypersurface which determines the i n i t i a l  
phase (xg, t o )  f o r  each operation. 

tl - to, t o  drive the 

The control i s  t o  be designed so that 
f o r  each operation it (i) minimizes the 
error  c r i te r ion  

where A and Q ( t )  a re  f i n i t e  symmetric 
nonnegative definite matrices a t  l e a s t  
one of which i s  posit ive def in i te  and 

Q(t)d2 for  a l l  tczko,tJ and (ii) 
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iizes a given control energy L A s  i n  reference 2 the conjugate variable 
i s  denoted EcRn and the Hamiltonian i s  
written 

where R ( t )  i s  a symmetric posit ive 
def ini te  matrix and R ( t ) E C 2  fo r  a l l  
t E  to,tl . 
turbations a t  shutdown and the control 
energy, E, may therefore be specified 
l e s s  than the min imum energy required t o  
get t o  the origin. 
avoids an unbounded control and other 
associated problems. The minimum 
energy, Eo, i s  given by 

The design admits plant per- c 1  

This procedure 

+ 25 

+ A  

[F(t)x + G(t)d 
\ 

The Hamiltonian i s  then minimized with 
respect t o  u t o  give a s  the optimal 
control function 

uo ( t )  = - 1 R - l ( t ) G ' ( t ) k ( t )  ( 8 )  h 

where 6 i s  re la ted t o  the system 
through the canonic equations 

where W( to ,tl) i s  the control labi l i ty  
matrix.' The bounding hypersurface 
must, therefore,  be such tha t  (i) it 
l i e s  within the hypersurface defined by 
the equation 

and tha t  (ii) a l l  perturbations within 
and on the bounding hypersurface a re  
acceptable. Requirement (ii) depends 
on the accuracy with which the l inear  
equations represent the physical system 
a s  w e l l  a s  the  designer's needs. 

This s e t  of equations have the boundary 
conditions 2 

SOLUTION FOR THE CONTROL 

The f i r s t  step i s  t o  adjoin ( 3 )  t o  
(2)  with a constant posit ive r e a l  
Lagrange multiplier t o  give a s  the 
adjoined cr i ter ion 

To solve f o r  k ( t )  l e t  l-( 
s e t  of solutions t o  (9)  such tha t  

] be a 
", t,tl) 
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In reference 2 X ( t , t l )  i s  shown t o  be 
the fundamental matrix of the optimally 
controlled plant. Then with the energy 
level, E, chosen such that x(t1) # 0, 

X - l ( t , t l )  exists for a l l  tEpO,td 
and k ( t )  may be written 

E ( t )  = E(t,tl)X"(t,tl)x(t) (16) 

Equations (16) and (8) give for the 
optimal control 

where e ( t , x )  replaces uo(t) t o  
denote optimal feedback control. h has 
yet t o  be determined; however, we may 
examine i t s  relation t o  the specific 
energy level, E, the fixed t i m e ,  
ti - to, and the system dynamics. 

Substitution of (15) into (8) gives 
the control i n  terms of the terminal 
state.  This then may be substituted 
into ( 3 )  t o  give as the constraint 
equation 

where 

Then by utilizing (14) i n  (18), the 
final form of the energy constraint 
equation i s  

* = ll xoll: 

where 

B = x-~ ' ( to , t l jnx-~(to, t l j  (a) 

Now the standard solution t o  the 
problem would require the solution of 
(20) for a positive rea l  multiplier 
prior t o  each operation since from (20) 
and (21) it i s  clear that ,  i n  general, 
h 
(%,to). To this end an analog method 
for  continuously tracldng the multiplier 
as a f b c t i a n  of the phase f o r  the case 
when Q(t) = 0 i s  essentially given i n  
reference 3 .  A method will now be shown 
whereby the on-line tracking o r  computing 
of h can be avoided by employing the 
aforementioned concept of a bounding 
hypersurface. 

i s  a function of the i n i t i a l  phase 

The regulator's mode of operation 
requires that some activation criterion 
be used to  begin each control operation. 
In v i e w  of this, it i s  noted that for  
each t o  and with h as  a parameter, 
(20) defines a family of hypersurfaces 
i n  state space from which the optimal 
control associated with A K i ' l l  use E 
amount of ener@;y. I f ,  for each to, 
there is a member of this family suitable 
f o r  a bounding hypersurface, then by 
using these hypersurfaces t o  define a 
bounding hypersurface varying with to, 
the on-line computation of h(t0) may 
be avoided. 

The method of using this activation 
criterion i s  t o  feed back the s ta te  with 
time varying gains t o  form 

As long as e i s  less  than E the con- 
t r o l  remains of f ,  but when e equals E 
the control i s  ini t ia ted and the optimal 
feedback control law associated with the 
h(to) i s  used. Of course, for time 
constant systems there will only be one 
h 
be time varying. 

so the bounding hypersurface w i l l  not 
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It should be pointed out t h a t  (18) 
i s  a direct  indication of the effective- 
ness of the system design since f o r  
each to it defines the  hypersurface 
t o  which the control will drive the 
state. 

A SIMPLE EXAMPLE 

I n  t h e  interest  of simplicity, the 
example plant i s  a constant undamped 
harmonic osc i l la tor .  I n  s p i t e  of i t s  
simplicity, it i l l u s t r a t e s  the  regula- 
t o r ' s  usefulness on the c lass  of con- 
s t an t  neutrally stable systems subject 
t o  small disturbances. The symmetric 
spinning space vehicle i s  a m e m b e r  of 
t h i s  c lass  i n  which considerable 
in te res t  has been shown.4,5,6,7 

The vector-matrix equation i s  
writ ten 

[]= [: ][I+ []u (23) 

where x1 i s  the displacement and x2 
i s  the velocity. The system i s  required 
t o  run from to = 0 t o  tl = T. The 
control labi l i ty  matrix i s  then computed 
with the  resu l t  

W(o,T) 
def ini te  f o r  a l l  T # @ so the  system 
i s  controllable. 

may be shown t o  be posit ive 

(25) 
L J 

This norm i s  constant f o r  the free plant 
and i s  a good measure of the  system per- 
turbation from equilibrium. Typically, 
neutrally stable systems have constants 
of free motion which may be expressed as 
quadratic forms i n  the state variables. 
One of these forms i s  often useful as an 
error  cr i ter ion.  

The energy constraint i s  chosen as 
half the in tegra l  square energy by 
l e t t i n g  R = 1 which gives 

This completes the  problem statement. 
U s e  of equation (9)  resu l t s  i n  the  
canonic d i f f e ren t i a l  equations 

The solution of (27) with the  appropriate 
terminal conditions resu l t s  i n  

F.( t ,T)  = 

To f'urther simplify the  problem, 
only the terminal error  w i l l  be mini- 
mized and the A matrix will be the 
ident i ty  matrix. 
c r i te r ion  circular i n  nature 

This makes the e r ror  
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r 
(2AYT-t)cos(T-t)+ 1 2A sin(T-t) 

where 

2 2 
A = [. + $T - tj - [& sin(T - tj  

Direct substitution of (28) and (29) 
into (17) and (19 )  results i n  the 
optimal feedback control l a w  

c 

+ (&T - t) + 1 

\ 1 

1 
2h 

- - sin(T - t)cos(T - 

and the D matrix 

T s in  2T Sin% 
2 - 4  2 

O = I I  2A2 

- t  
2 4 lq sin "J 

With the substitution of (29)  and (32) 
into (21), the B matrix i s  determined. 
E,  T, and some point desired t o  l i e  on 
the control activation hypersurface may 
now be chosen so that  A may be 

computed and the activation hypersurface 
determined. 

From X-'(o,T) and D, it i s  evident 
that with T an even multiple of I[, B 
defines a circular hypersurface. This 
indicates that, in general, the t i m e  of 
operation may be a v i t a l  parameter i n  
shaping the B-hypersurface. In  the 
example, however, a more general case has 
been chosen by sett ing T = ID. Since 
the period of the oscil lator 's  free 
motion i s  2x, the control i s  therefore 
i n  operation for more than one period. A 
displacement of 5 and a zero velocity was 
chosen rather arbi t rar i ly  t o  be on the 
B-hypersurface. By using th i s  point and 
(24) in  equation (4) ,  the minimum energy 
i s  found t o  be 2.62 units. 
this problem was chosen as 2.5 units t o  
be within th i s  l i m i t .  
then solved f o r  A. I ts  value was 0.115. 
The resulting B-hypersurface and 
D-hypersurface which are sl ightly ell ip- 
t i c a l  are shown i n  figure 1. 
trajectory during a control operation i s  
shown between the t w o  hypersurfaces. The 
time history of t h i s  trajectory and i ts  
associated control are shown i n  figure 2. 

The energy i n  

Equation (20) was 

A typical 

CONCLUSIONS 

A special family of hypersurfaces i n  
s ta te  space has been identified with the 
optimal linear regulator. It has been 
shown that on-line computation of the 
multiplier associated with the control 
constraint may be eliminated by choosing 
a member of t h i s  special family as the 
regulator's activation criterion. This 
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results i n  a relat ively simple optimal 
control system suitable f o r  repet i t ive 
operation. 
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Figure 1.- Hypersurface geometry and a typ ica l  optimal t ra jectory.  
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Figure 2.- Typical trajectory and control t i m e  history.  
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